Ultrafast time-resolved transient absorption and resonance raman spectroscopy study of the photodeprotection and rearrangement reactions of p-hydroxyphenacyl caged phosphates.
نویسندگان
چکیده
The kinetics and mechanism of the photodeprotection and rearrangement reactions for the pHP phototrigger compounds p-hydroxyphenacyl diethyl phosphate (HPDP) and diphenyl phosphate (HPPP) were studied using transient absorption (TA) and picosecond time-resolved resonance Raman (ps-TR(3)) spectroscopy. TA spectroscopy was employed to detect the dynamics of the triplet precursor decay as well as to investigate the influence of the solvent and leaving group on the triplet quenching process. Ps-TR(3) spectroscopy was used to directly monitor the formation dynamics for the photosolvolytic rearrangement product and its solvent and leaving group dependence. The TA and TR(3) spectroscopy experiments were also used to characterize the structural and electronic properties of the triplet precursor to the HPDP and HPPP deprotection reactions. The solvent effect observed in conjunction with the leaving group dependence of the triplet decay dynamics are consistent with a concerted solvent assisted triplet cleavage through a heterolytic mechanism for the HPDP and HPPP photodeprotection process. Correlation of the dynamics between the deprotection and rearrangement processes reveals there is a consecutive mechanism and the involvement of an intermediate between the two reaction steps. The reaction rate of the deprotection and rearrangement steps and the influence of the solvent and leaving group were determined and evaluated based on kinetic modeling of the dynamical data obtained experimentally for HPDP and HPPP in H(2)O/MeCN mixed solvents with varying water concentration in the solvent system. A solvation complex with a contact ion pair character was proposed to be the intermediate involved in the deprotection and rearrangement pathway. The results here combined with our previous study on the photophysical events occurring on the early picosecond time scale (Ma; et al. J. Am. Chem. Soc. 2005, 127, 1463-1472) provide a real time overall mechanistic description for the photodeprotection and rearrangement reactions of pHP caged phosphate phototrigger compounds.
منابع مشابه
Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds.
A combined femtosecond Kerr gated time-resolved fluorescence (fs-KTRF) and picosecond Kerr gated time-resolved resonance Raman (ps-KTR(3)) study is reported for two p-hydroxyphenacyl (pHP) caged phototriggers, HPDP and HPA, in neat acetonitrile and water/acetonitrile (1:1 by volume) solvents. Fs-KTRF spectroscopy was employed to characterize the spectral properties and dynamics of the singlet e...
متن کاملTime-resolved resonance Raman study of the triplet states of p-hydroxyacetophenone and the p-hydroxyphenacyl diethyl phosphate phototrigger compound.
Pico- and nanosecond time-resolved resonance Raman (TR3) spectroscopy have been utilized to study the dynamics and structure of p-hydroxyacetophenone (HA) and the p-hydroxyphenacyl-caged phototrigger compound p-hydroxyphenacyl diethyl phosphate (HPDP) in acetonitrile solution. Transient intermediates were detected and attributed to the triplet states of HA and HPDP. Nanosecond-TR3 measurements ...
متن کاملSubstituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions
Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ke...
متن کاملUnraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates
Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming "caged compounds" are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product ...
متن کاملFemtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.
Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 8 شماره
صفحات -
تاریخ انتشار 2006